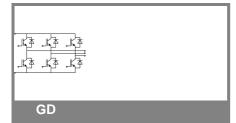
SK30GD123

IGBT Module

SK30GD123

Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T_s				= 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT							
V_{CES}	T _j = 25 °C			1200	V		
I _C	T _j = 125 °C	T _s = 25 °C		33	Α		
		$T_s = 80 ^{\circ}C$		22	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			50	Α		
V_{GES}				± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C		10	μs		
Inverse Diode							
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		24	Α		
		$T_s = 80 ^{\circ}C$		17	Α		
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		180	Α		
Module							
I _{t(RMS)}					Α		
T_{vj}				-40 + 150	°C		
T _{stg}				-40 + 125	°C		
V _{isol}	AC, 1 min.			2500	V		

Characte	25 °C, unless otherwise specified					
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,15	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1,2		V
		T _j = 125 °C		1,2		V
r_{CE}	V _{GE} = 15 V	T _j = 25°C		52		mΩ
		T _j = 125°C		76		mΩ
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V
		$T_j = 125^{\circ}C_{chiplev.}$		3,1	3,7	V
C _{ies}				1,65		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,25		nF
C _{res}				0,11		nF
$t_{d(on)}$				65		ns
t _r	R_{Gon} = 47 Ω	V _{CC} = 600V		100		ns
E _{on}		I _C = 25A		3,5		mJ
^t d(off)	R_{Goff} = 47 Ω	T _j = 125 °C		430		ns
t _f		V _{GE} =±15V		35		ns
E _{off}				2,5		mJ
$R_{th(j-s)}$	per IGBT				1	K/W

SK30GD123

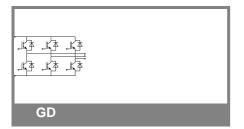
IGBT Module

SK30GD123

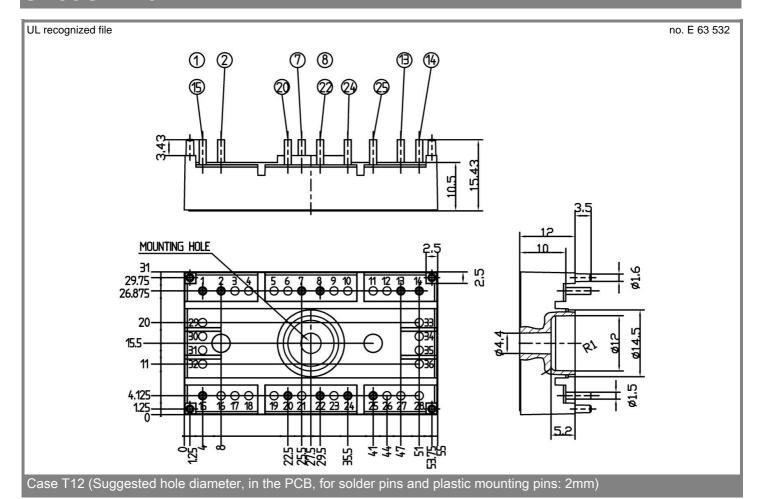
Preliminary Data

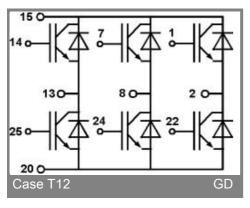
Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 15 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		T _j = 125 °C _{chiplev} .		1,8	2,3	V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		53	73	mΩ	
I _{RRM}	I _F = 15 A	T _i = 125 °C		16		Α	
Q_{rr}	$di/dt = -200 A/\mu s$,		2,7		μC	
E _{rr}	V _{CC} = 600V			0,6		mJ	
$R_{th(j-s)D}$	per diode				1,7	K/W	
M_s	to heat sink M1		2,25		2,5	Nm	
w				30		g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK30GD123

